
A gentle introduction to computational
chemistry and density functional theory

Written by Nathan M. Lui (2023)
With contributions from Dr. Ryan A. Woltornist (2021)

and many others; see the full list of contributors in the GitHub repo

This booklet is updated periodically as a offline version of the material; nevertheless the website will
always have the most up to date version of the course.
Last updated: 12 Jan 2021

The Short Course
The Short Course is designed as a primer for advanced undergraduates and beginning graduate
students. It is intended to give the completely inexperienced reader a step-by-step guide to running
electronic structure calculations on the AS-CHEM computing cluster at Cornell University, but it is our
hope that these instructions are easily generalizable to other computing clusters. The Short Course's
main computational engine is Gaussian16 since it was originally designed for Collum group
members, however a fully open-source edition (utilizing Psi4) is currently being written.

Software
Linux basics
My first script
SLURM basics

My first SLURM job
The Gaussian input file
My first Gaussian job
Understanding the Gaussian output file
Putting it all together: calculating cyclohexane A-values

The Long Course

The Long Course is a work in progress!

https://thisisntnathan.github.io/
https://github.com/thisisntnathan/dftCourse#acknowledgements
https://thisisntnathan.github.io/dftCourse
https://psicode.org/

The Long Course is a set of more advanced topics in scripting and computational chemistry. It was
written for those who have, or would like to, incorporate more advanced calculations/models into
their research. The topics start by streamlining computational workflow (with bash scripting) and
then progress towards the more under-the-hood options of computational engines.

Using bash to streamline computational workflow and data processing
So what exactly is an optimization?
Cost efficiency: Selecting basis sets and functionals without going overboard
Using custom basis sets and effective core potentials
What is a transition state?
The art of finding transition structures
The implicit/explicit solvation war
Electronic structure theory

Problems
My least favorite math teacher would always say that the only way to learn calculus is to solve lots of
calculus problems. This is a collection of case studies and practice problems that you can use to try
your own hand at computational chemistry. Let me know if there's anything else you'd like to see
here!

Cyclohexane A-values (from the Short Course)
The Smelly Dimer Problem
E-Z isomers of 3-(4-nitrophenyl)but-2-en-2-yl triflate

Resources
The Code Repo: Exercises and Problems

g16 “cheat codes” (routing line templates)

A collection of papers/resources I've amassed over the years.

Contributions and Corrections
This course is a living, breathing work-in-progress so if you spot any typos or if there are topics you'd
like to add (to see added) to the course check out the GitHub repo or email me!

mailto:nml64@cornell.edu
https://github.com/thisisntnathan/dftCourseCodeRepo
https://github.com/thisisntnathan/dftCourse#so-you-want-to-contribute
mailto:nml64@cornell.edu

Supplemental Readings
The International Journal of Quantum Chemistry has published an excellent series of tutorial reviews
for novices and professionals alike. I highly recommend looking through them. Below are a few you
may find particularly helpful.

Fourteen Easy Lessons in Density Functional Theory
by John P. Perdew and Adrienn Ruzsinszky
Int. J. Quantum Chem. 2012, 110 (15), 2801
DFT in a nutshell
by Kieron Burke and Lucas O. Wagner
Int. J. Quantum Chem. 2013, 113 (2), 96
The devil in the details: A tutorial review on some undervalued aspects of density functional theory
calculations by Pierpaolo Morgante and Roberto Peverati
Int. J. Quantum Chem. 2020, 120 (18), e26332

The Short course

1. Software
The programs engaged in this document were chosen as favorites (or in some cases, relics) of Collum
group members. There is a large emphasis on those that are open source and free to use (listed in
bold below), however there are a plethora of alternatives available across the internet and the
following list should be taken as a starting point, not a superlative.

You'll need the following programs for this course
Cornell VPN client (for Cornell students who intend to use the AS-CHEM cluster)
SFTP client (e.g. FileZilla, putty)
Molecular modeling program (e.g. GaussView, Avogadro, SAMSON, etc...)
Command-line terminal (e.g. the built in terminal on Linux/Mac OS or cygwin if you're using a
Windows machine)
Command-line text editor (e.g. Vim, Vi, Nano; helpful, but not required)
A text editor (e.g. Brackets, Sublime, VSCode, Notepad++, etc...)
3D-rendering/ray-tracing software, optional (e.g. CYLView, SAMSON, etc)

https://onlinelibrary.wiley.com/journal/1097461x
https://doi.org/10.1002/qua.22829
https://doi.org/10.1002/qua.24259
https://doi.org/10.1002/qua.26332
https://it.cornell.edu/articles/topics/2605/all/822

FileZilla
FileZilla is an SFTP (secure file transfer protocol) client that we'll use to move files between our

own computers and the cluster; we'll have to do this since we can't just wander over to the Baker
server room and stick a USB drive into the stacks every time we want our data.

Setup

If you haven't talked to your system admin to set yourself up a cluster account then stop here
and get that done first. You'll need a fully set up account (on our cluster or your own) to get the
most out of this course.

These setup instructions are for the AS-CHEM cluster only, if you're not trying to connect to this
cluster, contact your system administrator for instructions on how to transfer files to/from your own
system.

0. Install and connect to the Cornell VPN
1. Download the latest FileZilla release. Follow these instructions to install it.
2. Start FileZilla and open the site manager by going to File > Site Manager.
3. Add a new connection by clicking "New Site"

4. Configure the settings for the new site as shown:

https://filezilla-project.org/
https://it.cornell.edu/articles/topics/2605/all/822
https://filezilla-project.org/download.php?type=client
https://wiki.filezilla-project.org/Client_Installation

- Protocol: `SFTP - SSH File Transfer Protocol` - Host: `cluster2020.chem.cornell.edu` - Logon
type: `Normal` or `Ask for password` if you want to be asked every time - User: Your cluster logon
(typically your netID) - Password: If you selected “Normal” for logon type then enter your cluster
password. If “Ask for password” then you will be prompted for your password every time you
connect.

5. Click Connect to connect to the cluster and make sure you have everything set up correctly.
Your cluster home directory should show up on the right.

To reconnect in the future just go back to the site manager, select the cluster site and click Connect .
Remember that you need to be connected to the Cornell VPN to access the cluster.

Command-line terminals
If you are working on a Mac or Linux machine feel free to skip this part. Linux distributions and
MacOS come preinstalled with a command-line terminal.

Technically, Windows machines come with PowerShell (which is its own shell and scripting
language (two things you'll learn about in the next lesson)), but for the sake of uniformity and since
the cluster runs on CentOS, we'll use a bash shell. Windows users should download and install

cygwin . By default cygwin does not come with text editors installed (don't ask me why) so
you'll have to go through the setup.exe program to install these packages (start with vim and
nano). This blog post may come in handy.

Molecular modeling programs

GaussView

Due to licensing constraints you'll need to visit ChemIT to get GaussView installed on your
computer.

Avogardo

Avogadro is a free, open-source molecular editor and visualizer that can be used as an alternative
to GaussView . It comes fully documented and has built-in compatibility with Gaussian input adn
output. Download and install it from SourceForge.

Text Editors

Brackets

Brackets is an open-source, lightweight text editor that was built for web designers and front-end
developers, but it has access to a the local filesystem a really helpful feature in keeping our files
organized. Check out the Brackets Wiki to learn more (always start with the README).

VSCode

Visual Studio Code is what's known as an IDE, for integrated development environment. It is
open-source, but not lightweight. VS Code is super powerful, with built-in features like line-by-line

https://www.cygwin.com/
https://cygwin.com/packages/summary/vim.html
https://cygwin.com/packages/summary/nano.html
https://wilsonericn.wordpress.com/2011/08/15/cygwin-setup-gotchas/
https://it.chem.cornell.edu/
https://avogadro.cc/
https://avogadro.cc/docs/
https://sourceforge.net/projects/avogadro/files/latest/download
https://brackets.io/
https://github.com/brackets-cont/brackets/wiki
https://code.visualstudio.com/

debugging, intelligent code completion, built-in terminal, expanded language support, and spell
check. If you're just getting started, this is not the text editor you're looking for, but as you become
more experienced you may find that you want more than a simple code editor. Read the docs to get
started.

3D-rendering and ray-tracing

CYLView

CYLView is a free molecular visualizer currently in development by Claud Y. Legault at the University
of Sherbrook (Canada). Invaluable for drawing publication-quality chemical structures from
computational output. Both versions CYLView1.0 and CYLView20 can be downloaded here. Mac
users will need to install XQuartz in order to use CYLView1.0 . Its recommended that you install
both versions as CYLView20 is still pretty barebones.

2. Linux Basics
The AS-CHEM cluster (like many other high-performance computing clusters) runs on a Linux-based
operating system called CentOS so navigating its filesystem requires some knowledge of the Unix
shell. As this guide is written for those without much computer experience, the more experienced
reader may feel free to skip this section.

What is the shell?
The shell is a program that exposes a computer's operating system to a user or another program.1 It
is not the same as the program with which will interact with it: the terminal; however, since the
terminal is the main mode of communication with a shell, you commonly see these terms used
interchangeably.

There are many different shells; the most common, and the one we will use here, is the bourne again
shell or bash , but others, like zsh , tcsh , and csh , do and can also be used here with slight
modifications.

bash is the command-line shell, but it is also the name of the accompanying scripting
language. So in this course we use the bash program to send commands to the operating
system using the bash language.

https://code.visualstudio.com/docs
http://cylview.org/
http://cylview.org/download.html
https://www.xquartz.org/

Navigating the filesystem
When navigating a computer system via a command-line system you exist in a directory (imagine the
little streetview guy wandering around a city, or, if you can remember it, Zork) and, unless otherwise
specified, commands take action in and on the directory in which you are currently located a.k.a. the
current working directory.

When you open terminal you should see something like:

user@computer | ~ $

This is called the terminal prompt or the command prompt; it displays your username and the
computer that you're logged on to. The ~ is a shorthand for your home directory, but more on that in
a bit. Commands are entered after the $.

To view the current working directory type pwd :

NathanLui@local | ~ $ pwd
/Users/NathanLui

Moving around
To navigate between directories use the command cd followed by the path of the directory you want
to enter. For example, to navigate to the Documents folder use cd Documents . Notice how the ~
changes to display the path to the new directory ~/Documents .

NathanLui@local | ~ $ pwd
/Users/NathanLui
NathanLui@local | ~ $ cd Documents
NathanLui@local | ~/Documents $ pwd
/Users/NathanLui/Documents

The terminal will understand two types of paths: relative or absolute. A directory's absolute path
begins with / and describes the exact location of the directory. The command pwd returns a
directory's absolute path. A directory's relative path describes the location of a directory relative to
the current working directory.
In the example above the absolute path of Documents is /Users/NathanLui/Documents , but relative
to our home directory the relative path is just Documents .

Looking around

https://www.pcjs.org/software/pcx86/game/infocom/zork1/

Use the command ls to look inside the current working directory.

NathanLui@local | ~/Documents $ ls
launchCodes.txt playGame.sh Presentation Slides

Of course this doesn't tell us much about these files. So we use the flag -l

NathanLui@local | ~/Documents >>> ls -l
total 9688
-rw-r--r--@ 1 NathanLui 45K Jul 6 15:19 launchCodes.txt
-rwxr-xr-x 1 NathanLui 192B Jun 29 11:25 playGame.sh
drwxr-xr-x 9 NathanLui 627B Jun 1 2021 Presentation Slides

This tells us more (sometimes more than we want to know) about our files and folders. On the far left
of the output is the list of file's permission, or mode of access. These modes control what the file is
allowed to do and who is allowed to do them. There are 3 access levels for any file: the owner, the
group, and everyone. The 10 characters of the permissions section designate read, write, and
execute (run) access for these three groups (plus a general descriptor at the beginning).

For example, the file launchCodes.txt has the access descriptor -rw-r--r-- meaning it is a
regular file - for which the user (u) can read and write but not execute rw- , my group (g) can only
read r-- , and others (o) else can only read r-- . Whereas, the file playGame.sh is a program, or a
shell script. A shell script is run (executed) by the user, so it needs the permission code x to to
function properly. Notice above that playGame.sh can be executed by the user, group, and everyone
else. Sometimes you'll need to change permissions (usually, you need to give a file executable
permission) and this can be done using the chmod command (change mode) followed by the new

set of permissions. A more detailed explanation of file atributes and permissions can be found here.2

Making and editing files
To make or edit files in terminal you'll use one of the preinstalled text editors: vi , vim , or nano .
My personal favorite is vim . If you don't have experience using a command line text editor it will

take a bit of getting used to. A cheat sheet for vim can be found here.3 nano is the command-line
text editor that generally is the easiest to pick up for first-time users. You can find the full

documentation4 and cheat sheet5 on its website. If editing files in the terminal isn't your style, you
can always download your file of interest from the cluster and edit it locally and then upload it back
when you're done, but this will get tedious.

To edit or create a file simply type vim /path/to/file . If the file already exists vim will open it and
you can edit to your heart's content (of course, it should go without saying that text editors can only

https://wiki.archlinux.org/title/File_permissions_and_attributes
https://www.radford.edu/~mhtay/CPSC120/VIM_Editor_Commands.htm
https://www.nano-editor.org/docs.php
file:///Users/nml64/Documents/dftSite/booklet/www.nano-editor.org/dist/latest/cheatsheet.html

edit text based files). If the system can't find the file vim will open a blank file with the path/name
that you specified. vim will not save that file until you write it with :w .

Asking for help
Help will always be given in Linux to those who ask for it.

—Harry Potter's IT teacher, probably...

These are the essential, but very basic Unix commands to get you started. There can be quite the
learning curve when transitioning from a graphical system to the command line so I'll leave you with
two of the most important commands to remember when you're stuck: man and apropos .

Say you want to take a peek at the permissions of a certain file, but you can't remember the flag for
the detailed output. The man ls command brings up the manual page for ls . In it you'll find
detailed documentation for the command including its signature, description, options, examples, and
related commands. To exit the manual page press q . The Linux manual is also available online.6

Now, that's nice if you know what command you need for, but say you want to make a new directory
(folder) and you're not sure how. This is where apropos comes in.

NathanLui@local | ~ $ apropos make directory
...
makewhatis(8) - create whatis database
makewhatis.local(8) - start makewhatis for local file systems
mkdir(1) - make directories
mkfifo(1) - make fifos
mklocale(1) - make LC_CTYPE locale files
...

 Apropos searches the linux manual pages for the query and returns results sorted alphabetically.

Other useful commands

mkdir </path/to/directory> Make a new directory
rmdir </path/to/directory> Remove a directory
rm </path/to/file> Remove a file
mv </path/to/file> </path/to/directory> Move file to new directory
cp </path/to/file> </path/to/directory> Copy file to new directory
cat </path/to/file> Display the contents of a file
bash </path/to/executable> Run the executable

https://linux.die.net/man/

Let's build a program
Go to the next lesson to write your own script!

References

(1) Shell (computing)
(2) File permissions
(3) https://www.radford.edu/~mhtay/CPSC120/VIM_Editor_Commands.htm
(4) nano documentation
(5) nano cheat sheet
(6) The Linux Manual

3. My First Script
Let's write a script in bash ! We'll do this using the command line (with vim), but feel free to use
any text editor.

Navigate to your home directory and open a new file named hello.sh .

NathanLui@local | ~ $ vim hello.sh

In vim , type i to enter insert mode and type:

#!/bin/bash

echo "Hello world!"

The first line is called the shebang (a portmanteau of hash (#) and bang (!)).1 It tells the operating
system where to find the interpreter for the program. In this case we are telling the OS that this script
can be read and run by bash which is located at /bin/bash . Many different interpreters can be
used as an alternative to bash , for example #!/bin/python2.7 tells the OS that this script is
written in python and it should be run using an old version of python (2.7) located at
 /bin/python2.7 .

Recall that bash is both the shell and the scripting language, so bash commands we give,
also known as the syntax, in the script are executed by the interpreting program /bin/bash .

Comments

https://en.wikipedia.org/wiki/Shell_(computing)
https://wiki.archlinux.org/title/File_permissions_and_attributes
https://www.radford.edu/~mhtay/CPSC120/VIM_Editor_Commands.htm
https://www.nano-editor.org/docs.php
file:///Users/nml64/Documents/dftSite/booklet/www.nano-editor.org/dist/latest/cheatsheet.html
https://linux.die.net/man/

The interpreter doesn't treat this line as a program call since it starts with # , the bash comment
symbol. Any text in a bash script that is preceded with a # will be ignored by the interpreter. Note
that different languages have different comment symbols/types (e.g. (* OCaml *) , % MATLAB ,
 // Java , <!-- HTML --> , etc...). Comments within your code serve two purposes:

1. when other people read your code they understand your thinking and how you chose to
implement the program, and

2. when you read your code, months or years later, you understand your thinking and how you
chose to implement the program

Comment wide and comment often, but don't comment the obvious!

Now back to our script, press esc to back out of insert mode and type :wq to write the file and quit
vim . If you're doing this in a graphical text editor save the file to the home directory with the name
 hello.sh .

Now let's look for our new file in the home directory:

NathanLui@local | ~ $ ls
launchCodes.txt playGame.sh Presentation Slides
hello.sh

There it is! So lets run it with the command bash hello.sh .

NathanLui@local | ~ $ bash hello.sh
The command was not found or was not executable

That's not good! We're sure the file exists, so it must be our access modes. Let's check:

NathanLui@local | ~ $ ls -l
-rw-r--r-- 1 NathanLui Users 33B Dec 21 13:21 hello.sh

There's the issue, not a problem since it's one we already know how to fix.

NathanLui@local | ~ $ chmod +x hello.sh # n.b. the +x gives x
NathanLui@local | ~ $ ls -l # permission to everyone
-rwxr-xr-x 1 NathanLui Users 33B Dec 21 13:21 hello.sh

Now our program should run without a hitch.

https://en.wikipedia.org/wiki/Comment_(computer_programming)

view raw

NathanLui@local | ~ $ bash hello.sh
Hello world!

👏👏 You did it! 👏👏
Lets try something a bit more difficult. Open that script back up with vim hello.sh , add a variable
called food and give it a value (like your favorite food):

#!/bin/bash

echo "Hello world!"
food="pizza"

Now let's call that variable with:

echo "My favorite food is $food."

The $ tells the interpreter that we want the object stored in the variable food . Our full script now
looks like:

1

2

3

4

5

hello.sh hosted with ❤ by GitHub

When we run it, the script now prints:

NathanLui@local | ~ $ bash hello.sh # no need to change permissions
Hello world! # this time since we did it
My favorite food is pizza. # for this file earlier

Look at you go! One last thing that we should talk about is an environmental variable. An
environmental variable is one whose value is set outside the program. Let's edit our script one more
time. Append the line:

echo "I am $age years old."

So our script is now:

#!/bin/bash

echo "Hello world!"

food="pizza"

echo "My favorite food is $food."

https://gist.github.com/thisisntnathan/38262bc95d709f20d66237671b94f861/raw/5d3d128a0e4a2e83ef331b3e791192a099357c9c/hello.sh
https://gist.github.com/thisisntnathan/38262bc95d709f20d66237671b94f861#file-hello-sh
https://github.com/

view raw

1

2

3

4

5

6

helloEnv.sh hosted with ❤ by GitHub

But we haven't declared the age variable yet. In some languages this would throw an error, but if we
run our program we see:

NathanLui@local | ~ $ bash hello.sh
Hello world!
My favorite food is pizza.
I am years old.

This is because bash automatically initializes uninitialized variables to null at first use (i.e. it has
no value). So how do we get the script to print our age? We can initialize age as an environmental
variable and export it to our script. We can do this in one step using export .

NathanLui@local | ~ $ export age=26
NathanLui@local | ~ $ bash hello.sh
Hello world!
My favorite food is pizza.
I am 26 years old.

You might be wondering why would ever need to do this. Often times we'll be working with programs
and complex algorithms that can't be easily modified, or we'll want to set variables once instead of
every single time we run the program. These tasks can be easily accomplished using environmental
variables.

Scripting is useful for more than telling the world your favorite food and how old you are. Its our
primary way of sending instructions to the cluster. When we submit jobs to the CHEM cluster's
resource manager SLURM we do so in the form of shell scripts. More on that in the next chapter.

If you want to read more about the power of scripting I wholely recommend Al Sweigart's book
Automate the Boring Stuff with Python, a fantastic (and free) resource for budding programmers (and
busy grad students).2

References

#!/bin/bash

echo "Hello world!"

food="pizza"

echo "My favorite food is $food."

echo "I am $age years old."

https://gist.github.com/thisisntnathan/da145ae701a9f05e007bb6071843d418/raw/06f0ad1555bc1f80ab8717e95056aa2d35c374f1/helloEnv.sh
https://gist.github.com/thisisntnathan/da145ae701a9f05e007bb6071843d418#file-helloenv-sh
https://github.com/
https://automatetheboringstuff.com/

(1) Shebang (Unix)
(2) Automate the Boring Stuff with Python

4. SLURM
SLURM , formerly known as the Simple Linux Utility for Resource Management, is a type of program

called a workload manager.1 On large, multi-user systems it can be advantageous and equitable for a
program to control the allocation of computational resources, SLURM does just that.

When you want to run a job on the CHEM cluster you have to ask the SLURM daemon for resources
to allocate to your job. It then takes your script, figures out how much compute power you want, and,
if the nodes/memory are available, runs your script on them. If not, it places them in a queue until the
requested resources become available to you.

SLURM has its own set of commands, and its full documentation can be found here,2 but here we'll
go over only the most important ones: sinfo , pestat , squeue , sbatch , and scancel .

Gathering information
 sinfo gives us information about the status of the cluster's computing nodes (a node is a single
computer in the cluster).

nml64@as-chm-cluster | ~ $ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
chemq up infinite 1 alloc chem001
chemq up infinite 5 idle chem[002-006]
collumq up infinite 4 down* dbc[001-003,005]
collumq up infinite 1 mix dbc009
collumq up infinite 1 alloc dbc007
collumq up infinite 4 idle dbc[004,006,008,010]
widomq up infinite 1 drain bw001
widomq up infinite 1 mix bw007
widomq up infinite 5 idle bw[002-006]

By default, sinfo lists the nodes by their partition; the highest level of cluster organization (a
partition is a set of compute nodes). On our shared system nodes are partitioned by ownership, but
other systems may have partitions based on usage (e.g. large jobs, small jobs, post-processing, data
visualization, etc...) allowing the admin to install different programs on different partitions.

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://automatetheboringstuff.com/
https://slurm.schedmd.com/

By default SLURM commands only show us nodes we have access to (more on how to change that
below). So, for example, in the above snippet we have 3 partitions chemq , collumq , and widdomq .
 collumq has 10 total nodes, 4 of which (dbc1-3 and dbc5) are currently down, 1 of which (dbc7) is
fully allocated to a running job, 1 of which (dob9) is mixed, which means it still has resources
available, and 4 of which (dbc4,6,8,10) are idle. sinfo doesn't provide the most readable output, so
sometimes its easier to use pestat .

Notice how the terminal's command prompt has changed from NathanLui@Local to
 nml64@as-chm-cluster . This is because I'm now connected to the cluster, instead of working locally
on my own computer (more on how to do this in the next section).

 pestat is quite similar to sinfo -N (-N provides a node-oriented view of the cluster), but I find the
layout much easier to read. pestat also gives us data as to the CPU and memory capacities of each
node which will be helpful later.

nml64@as-chm-cluster | ~ $ pestat
Hostname Partition Node Num_CPU CPUload Memsize Freemem Joblist
 State Use/Tot (MB) (MB) JobId User ...
 bw001 widomq drain* 0 12 0.00 48277 37640
 bw002 widomq idle 0 12 0.00 64382 62151
 bw003 widomq idle 0 12 0.00 64382 62139
 bw004 widomq idle 0 12 0.00 64382 62144
 bw005 widomq idle 0 12 0.00 64382 62135
 bw006 widomq idle 0 12 0.00 64382 62135
 bw007 widomq mix 2 12 1.00* 64382 14752 8609 m----
 chem001 chemq alloc 16 16 15.98 31935 24991 8691 j-----
 chem002 chemq idle 0 16 0.00 31935 29712
 chem003 chemq idle 0 16 0.00 31935 29711
 chem004 chemq idle 0 16 0.00 31935 29721
 chem005 chemq idle 0 16 0.00 31935 29728
 chem006 chemq idle 0 16 0.00 31935 29730
 dbc001 collumq down* 0 8 0.00* 16032 0
 dbc002 collumq down* 0 8 0.00* 7968 0
 dbc003 collumq down* 0 8 0.00* 16032 0
 dbc004 collumq idle 0 16 0.00 24085 21791
 dbc005 collumq down* 0 16 0.00* 24085 0
 dbc006 collumq idle 0 16 0.00 24085 21805
 dbc007 collumq alloc 12 12 11.96 32126 26506 8652 nml64
 dbc008 collumq idle 0 12 0.00 32126 29959
 dbc009 collumq mix 12 40 11.82 192049 182642 8679 nml64
 dbc010 collumq idle 0 40 0.00 192049 189551

 squeue displays the current job queue:

nml64@as-chm-cluster | ~ $ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST
 8609 chemq matlab_t m---- R 5-13:38:51 1 bw007
 8652 collumq trans-Na nml64 R 3-20:58:56 1 dbc007
 8679 collumq cis-NaTB nml64 R 1-03:59:54 1 dbc009
 8691 chemq A2HMPA3_ j----- R 39:33 1 chem001

Notice how squeue gives us a lot of information about the running jobs; it tells us the job number,
who's running the job, the number of node(s), which node(s), their respective partitions, and how long
the jobs have been running for.

By default, squeue and sinfo only gives us data on the nodes we have permission to use, but if we
wanted to check on other nodes we can use the -all switch.

There are many switches you can use to filter the output of squeue and sinfo by user --user ,
partition --partition , node state --state , etc.

These are some of the most important commands we'll use in this tutorial. A short cheat sheet can be

found here.3

Submitting jobs
 sbatch and scancel are mirror commands. sbatch <script> submits the job script to the
SLURM daemon for resource allocation, and returns a job ID number. scancel <job ID> cancels a
job after allocation i.e., before or after a job starts running. Any files that have already been written

nml64@as-chm-cluster | ~ $ sinfo -all
Tue Dec 21 15:29:47 2021
PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT OVERSUBS GROUPS NODES STATE NODELI
chemq up infinite 1-infinite no NO chemit,col 1 allocated chem00
chemq up infinite 1-infinite no NO chemit,col 5 idle chem[0
slinq up infinite 1-infinite no NO slin,chemi 1 allocated sl001
slinq up infinite 1-infinite no NO slin,chemi 1 idle sl002
wilsonq up infinite 1-infinite no NO wilson,che 2 idle jjw[00
chenq up infinite 1-infinite no NO chen,chemi 1 mixed pc002
chenq up infinite 1-infinite no NO chen,chemi 1 idle pc001
loringq up infinite 1-infinite no NO loring,che 2 down* rl[001
loringq up infinite 1-infinite no NO loring,che 1 drained rl004
loringq up infinite 1-infinite no NO loring,che 1 idle rl002
collumq up infinite 1-infinite no NO collum,che 4 down* dbc[00
collumq up infinite 1-infinite no NO collum,che 1 mixed dbc009
collumq up infinite 1-infinite no NO collum,che 1 allocated dbc007
collumq up infinite 1-infinite no NO collum,che 4 idle dbc[00
widomq up infinite 1-infinite no NO chemit,col 1 drained bw001
widomq up infinite 1-infinite no NO chemit,col 1 mixed bw007
widomq up infinite 1-infinite no NO chemit,col 5 idle bw[002
lambertq up infinite 1-infinite no NO lambert,ch 2 allocated tl[001
nml64@as-chm-cluster | ~ $ squeue -all
Tue Dec 21 15:30:50 2021
JOBID PARTITION NAME USER STATE TIME TIME_LIMIT NODES NODELIST(REASON
 8590 slinq B3LYP-D3 y---- RUNNING 6-01:40:46 UNLIMITED 1 sl001
 8608 chenq matlab_t m---- RUNNING 5-13:51:21 37-12:00:00 1 pc002
 8609 widomq matlab_t m---- RUNNING 5-13:48:40 37-12:00:00 1 bw007
 8614 chenq matlab_t m---- RUNNING 5-01:41:36 37-12:00:00 1 pc002
 8652 collumq trans-Na nml64 RUNNING 3-21:08:45 17-12:00:00 1 dbc007
 8679 collumq cis-NaTB nml64 RUNNING 1-04:09:43 17-12:00:00 1 dbc009
 8686 slinq B3LYP-D3 y---- RUNNING 3:18:46 UNLIMITED 1 sl001
 8688 slinq B3LYP-D3 y---- RUNNING 52:00 UNLIMITED 1 sl001
 8691 chemq A2HMPA3_ j----- RUNNING 49:22 17-12:00:00 1 chem001
 8692 lambertq Dimer-6m k--- RUNNING 19:07 5-00:00:00 1 tl001
 8693 lambertq Dimer-6m k--- RUNNING 19:07 5-00:00:00 1 tl002

https://slurm.schedmd.com/pdfs/summary.pdf

view raw

will be preserved as they are when scancel is executed (keep this in mind if you choose to write any
large scratch files to your job directory instead of /scratch). In the next section, we'll learn about
how to format submission scripts and submit our first SLURM job.

References

(1) SLURM Workload Manager
(2) SLURM Documentation
(3) SLURM Cheat Sheet

5. My First SLURM Job
Now that we know how to gather information about the system, how do we ask it to run a job for us?

SLURM needs to know two things to run a job: what we want to do and the resources we need to

do it. We'll use a shell script to specify both of these parameters.

Let's make a new script called submit.sh . In your text editor copy and paste the following (minimal)
submission script:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

submit.sh hosted with ❤ by GitHub

#!/bin/bash

#SBATCH -p chemq # submit to partition: chemq

#SBATCH -J hello # job name

#SBATCH -o out.txt # name output file

#SBATCH -N 1 # run on one node

#SBATCH --mem=0 # allocate all available memory

⋀⋀⋀ Above are the resource requests ⋀⋀⋀

⋁⋁⋁ Below are the job tasks ⋁⋁⋁

echo 'Starting job'

bash hello.sh # run our first script from the

echo 'Resting 30 sec' # previous exercise

sleep 30 # do nothing for 30 sec

echo 'Ending job'

https://gist.github.com/thisisntnathan/7549164222e23dfe9c157e2679bca17f/raw/d3a176352417ef36c137ec1b63cdc652e0b0a0e6/submit.sh
https://en.wikipedia.org/wiki/Slurm_Workload_Manager
https://slurm.schedmd.com/
https://slurm.schedmd.com/pdfs/summary.pdf
https://gist.github.com/thisisntnathan/7549164222e23dfe9c157e2679bca17f#file-submit-sh
https://github.com/

Save this file in its own folder with a descriptive name like myFirstSlurmJob . Place the script
 hello.sh from the first exercise into this folder too. Now, in order to run this job you need to be on a
system that is managed by SLURM . So let's log on to the AS-CHEM cluster.

You'll need to be connected to the Cornell VPN to access the cluster. If you are a Cornell
chemistry student and don't have access to the cluster go see ChemIT (or your group IT
representative) to set up your cluster account. If you are not a Cornell chemistry student you'll
need to follow your institution's cluster login instructions. Depending on how your cluster is set
up some of the instructions below may not work, when in doubt contact your system
administrator.

Open up the command-line, type ssh <yourNetID>@cluster2020.chem.cornell.edu and you'll see
a password prompt appear. As you enter your password nothing will appear; this is normal. The
terminal is recording your keystrokes as usual, but will not display them for security purposes.

NathanLui@local | ~ $ ssh nml64@cluster2020.chem.cornell.edu
Password:

Last login: Sun Dec 26 14:04:09 2021 from <IP address>
nml64@as-chm-cluster | ~ $

See how the terminal prompt has now changed from NathanLui@local to nml64@as-chm-cluster
to indicate that I'm now working on the cluster. We can navigate the cluster with the same commands
we learned earlier. To test our script we'll need to use our SFTP client (FileZilla) to transfer our scripts
to the cluster. If you haven't yet, go set up FileZilla using the directions in section 1. Once you've
done that, open FileZilla and connect to the AS-CHEM cluster. Drag your whole myFirstSlurmJob
folder into the cluster pane to transfer it.

Of course, you have the option to create a new folder on the cluster directly using mkdir and
then drag the individual shell scripts into that file, but as your experience grows as will the
number of files you'll have to keep track of. It will be much more manageable if the organization
of your local system mirrors that of the cluster. Transferring whole directories ensures that paths
will remain the same. For more, see best practices.

Now, lets navigate into that folder and take a look:

nml64@as-chm-cluster | ~ $ cd myFirstSlurmJob/
nml64@as-chm-cluster | ~/myFirstSlurmJob $ ls -l
total 8.0K
-rwxr-xr-x 1 nml64 collum 79 Dec 26 15:59 hello.sh
-rwxr-xr-x 1 nml64 collum 338 Dec 26 15:59 submit.sh

Now we can submit our job to the SLURM workload manager:

nml64@as-chm-cluster | ~/myFirstSlurmJob $ sbatch submit.sh
Submitted batch job 8716

Checking the job queue and node status shows us the progress of our new job:

file:///Users/nml64/Documents/dftSite/booklet

nml64@as-chm-cluster | ~/myFirstSlurmJob $ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 8716 chemq hello nml64 R 0:16 1 chem006
nml64@as-chm-cluster | ~/myFirstSlurmJob $ pestat
Hostname Partition Node Num_CPU CPUload Memsize Freemem Joblist
 State Use/Tot (MB) (MB) JobId User ...
...
 chem006 chemq mix 16 16 16.00 31935 29651 8716 nml64
...

But wait a second! Where is our output? We've tasked 16 CPUs with 28 GB of memory to tell the
whole world "Hello!", where did it all go? Let's take a look at our directory.

nml64@as-chm-cluster | ~/myFirstSlurmJob $ ls -l
total 12K
-rwxr-xr-x 1 nml64 79 Dec 26 15:59 hello.sh
-rw-r--r-- 1 nml64 81 Dec 26 17:35 out.txt
-rwxr-xr-x 1 nml64 338 Dec 26 15:59 submit.sh
nml64@as-chm-cluster | ~/myFirstSlurmJob $ cat out.txt
Starting job
Hello world!
My favorite food is pizza.
I am years old.
Resting 30 sec
Job complete

So that's where its all gone to! SLURM redirects all standard output from the terminal to the output
file that we specified in the resource requests section.

There's still another issue! The program doesn't know how old we are because the environmental
variable we declared in the last tutorial doesn't get transferred with the file (i.e. we're in a different
environment). So we have to redeclare age in this environment.

1

2

3

4

5

6

7

8

9

10

11

12

#!/bin/bash

#SBATCH -p chemq # submit to partition: chemq

#SBATCH -J hello # job name

#SBATCH -o out.txt # name output file

#SBATCH -N 1 # run on one node

#SBATCH --mem=0 # allocate all available memory

⋀⋀⋀ Above are the resource requests ⋀⋀⋀

⋁⋁⋁ Below are the job tasks ⋁⋁⋁

echo 'Starting job'

view raw

13

14

15

16

17

submitEnv.sh hosted with ❤ by GitHub

This fixes our issue and if we run the job again we can see that the script works as it's supposed to!

nml64@as-chm-cluster | ~/myFirstSlurmJob $ sbatch submit.sh
Submitted batch job 8719
nml64@as-chm-cluster | ~/myFirstSlurmJob $ ls -l
total 12K
-rwxr-xr-x 1 nml64 collum 107 Dec 26 17:46 hello.sh
-rw-r--r-- 1 nml64 collum 100 Dec 26 17:56 out.txt
-rwxr-xr-x 1 nml64 collum 352 Dec 26 17:55 submit.sh
nml64@as-chm-cluster | ~/myFirstSlurmJob $ cat out.txt
Starting job
Hello world!
My favorite food is pizza.
I am 26 years old.
Resting 30 sec
Job complete

🍾👏🍾 Congrats!!! You just ran your first SLURM job 🍾👏🍾

SLURM will overwrite data files with the same name

One important thing to note is that we ran this job multiple times in the same directory. So SLURM

wrote over out.txt the second time we ran the job. There is no way to get back our first out.txt
(trivially, you could scroll up in the terminal history looking for our previous cat out.txt call, but this
isn't really a generalizable solution). This could be problematic since we might not remember how we
got to the previous out.txt and how to recreate its results. In general, a single folder should
represent a single program call so that unintentional overwrites cannot happen. In other words:

Every new job should begin in its own new folder.

In the next section, we'll talk about the final part of our recipe: the Gaussian input file.

export age=26

bash hello.sh # run our first script from the

echo 'Resting 30 sec' # previous exercise

sleep 30 # do nothing for 30 sec

echo 'Ending job'

https://gist.github.com/thisisntnathan/8bd4ae58c9ff391c8b313a68151a6498/raw/bddd4ca05db23864c3eb8065bfe798c87d5901cd/submitEnv.sh
https://gist.github.com/thisisntnathan/8bd4ae58c9ff391c8b313a68151a6498#file-submitenv-sh
https://github.com/

6. The Gaussian Input File
Gaussian16 (g16) input files are plain text files that end in .com or .gjf . They can be

generated using a molecular modeling program like GaussView or Avogadro or in a simple text
editor (provided one has the atomic coordinates already). The general format of a Gaussian input
file is given below accompanied by a short description of each section.

Link 0 commands ! Specifies memory, CPU, and other job information
Routing information ! Specifies job parameters
<<<BLANK LINE>>>
Title line ! Free-format comment line
<<<BLANK LINE>>>
Charge and Multiplicity ! Space delimited
Molecule specification(s) ! Cartesian, Z-matrix, or Redundant Internals
<<<BLANK LINE>>>
Job/option specific input ! See g16 manual
<<<BLANK LINE>>>
<<<BLANK LINE>>>

Formatting and syntax

In general, Gaussian input files follow simple and flexible syntax and grammar rules:1

Inputs are case-insensitive i.e., opt, OPT, and oPt request the same optimization job
Comments are made using the exclamation point (!)
External files can be read into an input using the syntax: @path/to/file
Keywords and keyword options can be specified using the following options:

keyword=option
keyword(option)
keyword=(option1, option2, ...)
keyword(option1, option2, ...)

Link 0
Link 0 command lines begin with the percent % symbol and set program control options such as
resource limits, whether to save and what to name scratch files, where to access old scratch files,

etc… The link 0 commands are detailed here.2 Each link 0 command requires its own line. Every link
0 option can also be called as a command line flag in your shell script or passed to Gaussian as an
environmental variable. Equivalent commands and the corresponding precedence are detailed under
the “Equivalencies” tab in the link above.

https://gaussian.com/input/
https://gaussian.com/link0/

This section (and everything else in the input file) is an instruction to Gaussian , not SLURM .
The memory and CPU allocations specified in the input file should, ideally, be equal to those
requested from SLURM (so that there is no "wasted" computing power), but must not be greater
than those requested from SLURM , otherwise Gaussian will attempt to allocate more
resources than has been made available to it which will lead to job failure.

The .chk file

A common link 0 command is %chk , used to save the checkpoint file from the calculation (typically
deleted with other scratch files when the job is completed). Every iteration of a calculation
Gaussian saves an image of job in the checkpoint file (like a savepoint) allowing the user to go

back and restart a failed job. In addition to various savepoints, the checkpoint file also allows the user
to view the molecular orbitals in GaussView . Additionally, specifications (e.g. basis set, functional,
molecular geometries, etc...) can be read from the checkpoint file for future jobs; however, this means
the .chk file can get very large (on the order of 100s of mb). Saving .chk files indiscriminately is
unadvisable unless you have ample storage space.

Routing information
The routing line of the Gaussian job file begins with the pound/hash # symbol. The letter following
the # determines the level of output. The options are #P , #N , & #T which provide verbose,
normal, and terse levels of description in the job’s output file. The default option is #N (which can
shortened to #). The options that follow are referred to by Gaussian as “keywords” and are

responsible for setting up the requested calculation.3

The routing line continues with a method and basis set declaration in single-slash notation. If no
options are specified the default method is a Hartree-Fock calculation (HF) using the minimal Slater-
type orbital basis functions (STO-3G), given as HF/STO-3G. g16's built in DFT methods and basis
sets are available in the documentation. The choice of functional and basis set are discussed further
in a later section.4,5

With the advancement of computational chemistry and the availability of computing resources
there is no reason to perform the default HF/STO-3G computation. The most commonly used
theory/basis combination in computational organic chemistry is the infamous Becke, 3-
parameter, Lee-Yang-Parr (B3LYP) hybrid-exchange correlated functional used in combination
with the 6-31g* basis set.

The final required keyword in the routing line is the type of calculation. Typical calculations include
geometry optimizations (Opt), vibrational frequency analysis (Freq), single-point molecular energy

http://gaussian.com/keywords/
https://gaussian.com/dft/
https://gaussian.com/basissets/

calculations (SP), NMR shift calculations (NMR), etc… A full list of g16 's computational capabilities

can be found here.6 These job keywords can be specified on their own or with various options.

A calculation minimally requires a functional, basis set, and the type of calculation; however, it is
usually necessary to specify customizable options such as implicit solvation, temperature (for
frequency analysis), initial guesses, counterpoise correction, empirical dispersion correction, extra
basis functions, effective core potentials (i.e., pseudopotentials), etc… These options are specified

from the routing line using their respective keyword options.3 The full list of Gaussian keywords

and their availbe options can be found in the g16 documentation.7

Keywords can be specified in any order. The routing section is fully reproduced in the output file and
terminated by a blank line.

Integration grid size

All DFT methods implemented in Gaussian involve a grid-based numerical integration of the
functional (or its derivatives). Consequently, the accuracy of a DFT calculation is dependent on the
resolution of the integration grid. In Gaussian16 the default integration for all DFT functionals is
calculated over a pruned grid with 99 radial shells and 590 angular points, denoted (99,590), and
specified by the keyword Integral(grid=ultrafine) . This is sufficient for the vast majority of all
calculations. Using a smaller grid, while faster, is not recommended for most DFT calculations. Lastly,

energy comparisons must be done using the same grid size.4

Job title
The title/comment line is plaintext that is reproduced in the Gaussian output file and terminated by
a blank line.

Charge and multiplicity
The charge and multiplicity of the system is given before the molecule specification in standard
convention separated by a space. For example, -1 1 describes an anionic singlet state.

Molecule specification
The molecule specification can be given in either standard cartesian (xyz) or internal (Z-matrix)
coordinates. Note that specification in one coordinate system or another will not dictate what
coordinates will be used to perform the optimization itself which defaults to Gaussian 's redundant
internal coordinates, but can be changed by specifying an option in the Opt keyword.

https://gaussian.com/capabilities/?tabid=1
http://gaussian.com/keywords/
http://gaussian.com/man/
https://gaussian.com/dft/

This section may be omitted altogether if reading the start geometry from a pre-existing file (such as a
checkpoint (.chk) file) using the geom=checkpoint option.

The molecule specification is terminated by a blank line.

Job/keyword options
Some keyword options require additional input (such as specifying ECPs or additional basis
functions). This additional information is placed after the molecule specification and each individual
keyword’s specifications are terminated by blank lines.

The input file is terminated by two blank lines.

A simple g16 input file

Below is a fully functional Gaussian input file for a single point molecular energy calculation. Copy
+ paste it into a text editor and save it as coolMolecule.com and see if you can figure out what
we're trying to do in the next section. (Hint: open it up in your favorite molecular editor/viewer)

%NPROCSHARED=16 ! run on 16 parallel cores
%MEM=28GB ! run with 28 gb memory
%Chk=coolMolecule.chk ! save a checkpoint file
#N M062X/def2tzvp SP ! calculate single-point energy

My cool molecule

0 1 ! neutral singlet
C ! starting geometry for
C 1 B1 ! a molecule specified in
C 2 B2 1 A1 ! gaussian internal coordinates
C 3 B3 2 A2 1 D1 0
C 4 B4 3 A3 2 D2 0 ! to save space bond lengths,
C 1 B5 2 A4 3 D3 0 ! angles, and dihedrals are all
H 3 B6 2 A5 1 D4 0 ! specified as variables
H 2 B7 1 A6 6 D5 0
H 1 B8 6 A7 5 D6 0
H 1 B9 6 A8 5 D7 0
H 4 B10 3 A9 2 D8 0
H 4 B11 3 A10 2 D9 0
H 5 B12 4 A11 3 D10 0 ! g16 doesn't support comments
H 5 B13 4 A12 3 D11 0 ! in the molecule specification
H 6 B14 1 A13 2 D12 0 ! so get rid of these comments
H 6 B15 1 A14 2 D13 0 ! before you try to run this job
H 3 B16 2 A15 1 D14 0
C 2 B17 1 A16 6 D15 0
H 18 B18 2 A17 1 D16 0
H 18 B19 2 A18 1 D17 0
H 18 B20 2 A19 1 D18 0

 B1 1.51510600
 B2 1.51517951
 B3 1.51543497
 B4 1.51512522
 B5 1.51498514
 B6 1.12087116
 B7 1.12176819
 B8 1.12177478
 B9 1.12093060
 B10 1.12176062
 B11 1.12091101
 B12 1.12095758
 B13 1.12181557
 B14 1.12176019
 B15 1.12097986
 B16 1.12168148
 B17 1.54000000
 B18 1.07000000
 B19 1.07000000
 B20 1.07000000

 A1 111.36252447
 A2 111.24127560
 A3 111.26574203
 A4 111.30936835
 A5 109.59001104
 A6 109.39681635
 A7 109.40740597
 A8 109.57492433
 A9 109.41106707
 A10 109.58676541
 A11 109.55885178
 A12 109.38713435
 A13 109.41082787
 A14 109.56859847
 A15 109.42519797
 A16 109.55953690
 A17 109.47120255
 A18 109.47120255
 A19 109.47123134
 D1 55.25714299
 D2 -55.23663791
 D3 -55.19282652
 D4 176.59526965
 D5 65.84971766
 D6 -65.94975705
 D7 176.44368868
 D8 65.79362957
 D9 -176.57422515
 D10 176.61579480
 D11 -65.80639557
 D12 -65.96332262
 D13 176.42532586
 D14 -65.75731388
 D15 -176.56184324
 D16 -178.76723016
 D17 -58.76721537
 D18 61.23277724

References

(1) Gaussian input file syntax
(2) Link 0 commands
(3) Gaussian keyword list
(4) DFT methods
(5) Basis sets

https://gaussian.com/input/
https://gaussian.com/link0/
http://gaussian.com/keywords/
https://gaussian.com/dft/
https://gaussian.com/basissets/

(6) Gaussian capabilities
(7) Gaussian16 documentation

7. My First Gaussian Job
If you've been following along then you almost have all the pieces to run your first Gaussian job on
our cluster.

There's just a little bit of work we need to do tie everything together.

Our g16 input file

We should tweak the .com file that we were working on last section. First, we'll get rid of the link 0
commands since we can easily (and more reliably) pass them to Gaussian as environment
variables. Next, we'll run a geometry optimization and frequency analysis instead of just calculating
the energy.

A frequency analysis should always accompany geometry optimizations to verify that the final
geometry is a global minimum on the potential energy surface (i.e., a true ground state), instead
of a saddle point.

To do this we'll specify the following keywords:

#N M062X/def2svp ! use the m06-2x functional with def2svp basis set
OPT ! conduct a ground state geometry optimization
FREQ=NoRaman ! conduct a frequency analysis of the optimized geometry
 ! do not calculate Raman stretches (reduces computation time by ~30%)
temperature=273.15 ! standard temperature
Integral(Grid=UltraFine) ! use an ultrafine integration grid (99,590)

So our full input should look like:

1

2

3

4

5

6

7

8

#N M062X/def2svp OPT FREQ=NoRaman temperature=273.15 Integral(Grid=UltraFine)

eqMe-cyclohexane

0 1

C

C 1 B1

C 2 B2 1 A1

C 3 B3 2 A2 1 D1 0

https://gaussian.com/capabilities/?tabid=1
http://gaussian.com/man/

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

C 4 B4 3 A3 2 D2 0

C 1 B5 2 A4 3 D3 0

H 3 B6 2 A5 1 D4 0

H 2 B7 1 A6 6 D5 0

H 1 B8 6 A7 5 D6 0

H 1 B9 6 A8 5 D7 0

H 4 B10 3 A9 2 D8 0

H 4 B11 3 A10 2 D9 0

H 5 B12 4 A11 3 D10 0

H 5 B13 4 A12 3 D11 0

H 6 B14 1 A13 2 D12 0

H 6 B15 1 A14 2 D13 0

H 3 B16 2 A15 1 D14 0

C 2 B17 1 A16 6 D15 0

H 18 B18 2 A17 1 D16 0

H 18 B19 2 A18 1 D17 0

H 18 B20 2 A19 1 D18 0

 B1 1.51510600

 B2 1.51517951

 B3 1.51543497

 B4 1.51512522

 B5 1.51498514

 B6 1.12087116

 B7 1.12176819

 B8 1.12177478

 B9 1.12093060

 B10 1.12176062

 B11 1.12091101

 B12 1.12095758

 B13 1.12181557

 B14 1.12176019

 B15 1.12097986

 B16 1.12168148

 B17 1.54000000

 B18 1.07000000

 B19 1.07000000

 B20 1.07000000

 A1 111.36252447

 A2 111.24127560

 A3 111.26574203

view raw

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

eqMeCyhex.com hosted with ❤ by GitHub

Let's save it into a folder called eqMeCyclohexane and start working on our SLURM script.

SLURM job script

 A4 111.30936835

 A5 109.59001104

 A6 109.39681635

 A7 109.40740597

 A8 109.57492433

 A9 109.41106707

 A10 109.58676541

 A11 109.55885178

 A12 109.38713435

 A13 109.41082787

 A14 109.56859847

 A15 109.42519797

 A16 109.55953690

 A17 109.47120255

 A18 109.47120255

 A19 109.47123134

 D1 55.25714299

 D2 -55.23663791

 D3 -55.19282652

 D4 176.59526965

 D5 65.84971766

 D6 -65.94975705

 D7 176.44368868

 D8 65.79362957

 D9 -176.57422515

 D10 176.61579480

 D11 -65.80639557

 D12 -65.96332262

 D13 176.42532586

 D14 -65.75731388

 D15 -176.56184324

 D16 -178.76723016

 D17 -58.76721537

 D18 61.23277724

https://gist.github.com/thisisntnathan/b20f36ab9304fde103b5a0ae7321fbe7/raw/7fa79ada1666e5e787145bf9acade4fb35bc1fe0/eqMeCyhex.com
https://gist.github.com/thisisntnathan/b20f36ab9304fde103b5a0ae7321fbe7#file-eqmecyhex-com
https://github.com/

Gaussian16 is slightly more resource intensive than our hello.sh script, so we'll need to be a bit
better at requesting resources from SLURM than the minimal requests we made in the last exercise.
In your myFristG16Job make a new submission script with the following resource allocation request:

#SBATCH -p chemq # submit to partition: chemq
#SBATCH -J eqMeCyhex # job name
#SBATCH -o %x_oe # name of stdout/stderr file
#SBATCH -N 1 # total number of nodes requested
#SBATCH --ntasks-per-node=16 # total number of tasks requested
#SBATCH --mincpus=16 # assign at least 16 CPUs from each node
#SBATCH --mem=0 # allocate all of the node's available memory
#SBATCH -t 240:00:00 # max run time (hhh:mm:ss)
#SBATCH --mail-type=ALL # send emails at job START/END/FAIL
#SBATCH --mail-user=<yourNetID>@cornell.edu

n.b. The %x in the -o option line is a SLURM variable for the job name.

Now, specify the job details:

g16root=/software # the g16.profile file defines the g16
. $g16root/g16/bsd/g16.profile # defaults; ask admin for its location
export GAUSS_SCRDIR=/scratch
export GAUSS_CDEF='0-15' # see https://gaussian.com/link0/ for
export GAUSS_MDEF='28GB' # environment variable definitions
export GAUSS_YDEF='eqMeCyhex.chk'

The last four lines define environment variables for g16 ; these are equivalent to setting link 0
commands directly in the .com file, but any link 0 commands specified in the .com file will override
those passed to Gaussian as environmental variables or command-line options.1

Recall that the memory and CPU assignments requested by g16 must be at most those
requested from the SLURM resource daemon, otherwise the job will fail due it insufficient
resources.

The last thing left to do is to call the program. To run g16 call the executable with
 /path/to/g16 <inputFile> <outputFileName> (by convention, Gaussian output files have the
ending .log):

$g16root/g16/g16 eqMeCyhex.com eqMeCyhex.log
on AS-CHEM the g16 program is located at /software/g16/g16 on other clusters
it may not be in the same place. Ask your system admin for its location!

https://gaussian.com/link0/

view raw

At this point we have everything we need. The rest of our job details will be read into g16 from the
input file. Our full job script should look like:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

g16run.sh hosted with ❤ by GitHub

Save it into the same folder as eqMeCyhex.com and now let's go submit it!

Submitting our first Gaussian job

In FileZilla connect to the CHEM cluster and drag your whole eqMeCyclohexane folder from your
computer to the cluster's home directory. cd into that folder and make sure everything's where it
should be.

nml64@as-chm-cluster | ~ $ cd eqMeCyclohexane/
nml64@as-chm-cluster | ~/eqMeCyclohexane $ ls
eqMeCyclohex.com g16run.sh

Submit the job with sbatch . Its usually a good idea to make sure that the job has started properly.
When Gaussian jobs fail they typically fail in the first 20 seconds (usually due to a FileIO issue,
syntax errors, or insufficient resources) so checking that the job is running smoothly prevents you

#!/bin/bash

#SBATCH -p chemq # submit to partition: chemq

#SBATCH -J eqMeCyhex # job name

#SBATCH -o %x_oe # name of stdout/stderr file

#SBATCH -N 1 # total number of nodes requested

#SBATCH --ntasks-per-node=16 # total number of tasks requested

#SBATCH --mincpus=16 # assign at least 16 CPUs from each node

#SBATCH --mem=0 # allocate all of the node's available memory

#SBATCH -t 240:00:00 # run time (hhh:mm:ss)

#SBATCH --mail-type=ALL # send emails at job START/END/FAIL

#SBATCH --mail-user=<yourNetID>@cornell.edu

g16root=/software # the g16.profile file defines the g16

. $g16root/g16/bsd/g16.profile # defaults; ask admin for its location

export GAUSS_SCRDIR=/scratch

export GAUSS_CDEF='0-15' # see https://gaussian.com/link0/ for

export GAUSS_MDEF='28GB' # environment variable definitions

export GAUSS_YDEF='eqMeCyhex.chk'

$g16root/g16/g16 eqMeCyhex.com eqMeCyhex.log

https://gist.github.com/thisisntnathan/30ea71341d21b924bb1d73c44b071f22/raw/51d16c3b506479c2321f2e66006817511cfac11f/g16run.sh
https://gist.github.com/thisisntnathan/30ea71341d21b924bb1d73c44b071f22#file-g16run-sh
https://github.com/

from coming back later just to realize that your job was killed after 7 seconds because you spelled
the input filename incorrectly. If we look at the files in our directory while the job is running, we see
three new files our checkpoint file eqMeCyhex.chk , our Gaussian output file eqMeCyhex.log , and
our SLURM output file eqMeCyhex_oe .

nml64@as-chm-cluster | ~/eqMeCyclohexane $ sbatch g16run.sh
Submitted batch job 8721
nml64@as-chm-cluster | ~/eqMeCyclohexane $ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 8721 chemq eqMeCyhe nml64 R 0:36 1 chem005
nml64@as-chm-cluster | ~/eqMeCyclohexane $ ls
eqMeCyhex.chk eqMeCyhex.com eqMeCyhex.log eqMeCyhex_oe g16run.sh
nml64@as-chm-cluster | ~/eqMeCyclohexane $ ls
eqMeCyhex.chk eqMeCyhex.com eqMeCyhex.log eqMeCyhex_oe fort.7 g16run.sh

 fort.7

After the job is completed we see another file fort.7 . After a job finishes Gaussian "punches

out" (the parlance comes from a time when computers used punched cards as fileIO)2 a separate
output for the results of that calculation. The output can be specified using the Punch keyword,
however Gaussian punches a new fort.7 file at each termination. In our combined
optimization/frequency calculation the program terminates twice: once following the optimization and
again after the vibrational frequency analysis. So, in a combined job you get only the punch out for
the final calculation.

Checking for successful termination
We can do a quick check to make sure our job finished correctly using tail .

nml64@as-chm-cluster | ~/eqMeCyclohexane $ tail eqMeCyhex.log

 ... THE UNIVERSE IS NOT ONLY QUEERER THAN WE SUPPOSE,
 BUT QUEERER THAN WE CAN SUPPOSE ...

 -- J. B. S. HALDANE
 Job cpu time: 0 days 0 hours 27 minutes 52.9 seconds.
 Elapsed time: 0 days 0 hours 1 minutes 46.1 seconds.
 File lengths (MBytes): RWF= 66 Int= 0 D2E= 0 Chk= 5 Scr= 1
 Normal termination of Gaussian 16 at Mon Dec 27 13:06:58 2021.

 tail -n prints the last n lines (by default n is 10) of the file to the console. The first two lines tell
us how long the job took, the third tells us the size of the job's scratch files, and the final line informs

file:///Users/nml64/Documents/dftSite/booklet/en.wikipedia.org/wiki/Punched_card
https://gaussian.com/punch/

us that Gaussian terminated without error. Additionally, if your job terminates successfully
Gaussian will print you a quote. If the job had failed the output tail would look something like the

code bloc below. Different reasons for failure will produce different looking outputs but all failed jobs
will produce an Error termination message.

nml64@as-chm-cluster | ~/.../NaTMIPS/A3_eee_tol $ tail eqMeCyhex.log
 Error on total polarization charges = ********
 SCF Done: E(RM062X) = -8076.68013868 A.U. after 129 cycles
 NFock=128 Conv=0.45D-02 -V/T= 7.5222
 SMD-CDS (non-electrostatic) energy (kcal/mol) = -2.87
 (included in total energy above)
 Convergence failure -- run terminated.
 Error termination via Lnk1e in /software/g16/l502.exe at Sat Dec 18 17:05:50 2021.
 Job cpu time: 14 days 5 hours 4 minutes 13.4 seconds.
 Elapsed time: 1 days 5 hours 16 minutes 45.2 seconds.
 File lengths (MBytes): RWF= 958 Int= 0 D2E= 0 Chk= 45 Scr= 1

🎉🎉 Great job! You just ran your first Gaussian optimization!
👏👏

In the next section, we'll go over how to examine the output file and parse it for the important
thermochemical data.

References

(1) Gaussian link 0
(2) Punched Card
(3) The Gaussian Punch keyword

8. Understanding the Gaussian output
file
For easier analysis, let's drag all of our files back onto our personal laptop using FileZilla. (If you want
you can try to read the Gaussian .log file in the terminal, but you'll soon see why that's not going
to scale well.)

https://gaussian.com/link0/
file:///Users/nml64/Documents/dftSite/booklet/en.wikipedia.org/wiki/Punched_card
https://gaussian.com/punch/

We won't use the fort.7 file and eqMeCyhex_oe has a total size of 0 bytes (i.e., there's nothing
written in it) so for the sake of cleanliness we can delete those. First, let's look at our optimized
structure to make sure the final geometry makes chemical sense. Open eqMeCyhex.log in
GaussView (download it from the code repo if you're not following along).

If you're using GaussView5 with Gaussian16 you'll most likely run into this error:

Don't panic, this issue occurs because g16 writes some extra information in the output file that
GaussView5 doesn't know how to handle. Use this script provided by Dr. Davor Šakić from the

University of Zagreb to generate a output file that GaussView5 can read.
GaussView shows us a perfectly normal equatorial methylcyclohexane.

https://github.com/thisisntnathan/dftShortCourseFiles/blob/370b1efe3fbc332fc7beef72050ffe52b357fcf5/eqMeCyclohexane/eqMeCyhex.log
https://gist.github.com/thisisntnathan/2aab4e51f1887c2e41feb71b081d5a7f

You should always check your structures to make sure they are generally expected since not all
mathematical solutions are physical ones. Sometimes our jobs will give us chemically nonsensical
solutions simply because the algorithm found a particular energy well that it couldn't get out of.

The computers are here to do your math, not your thinking.

Fantastic, let's grab some numbers. One of the first things we noticed is that eqMeCyhex.log is just
a really long text file that GaussView5 is able to generate a picture from. So, open eqMeCyhex.log
in a text editor (or follow along in another window using the link above) and we search the output for
energies and vibrational/thermochemical data.

First we'll want to check for imaginary (negative) vibrational frequencies which indicate saddle point
structures. Search eqMeCyhex.log for Harmonic frequencies :

...
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
 1 2 3
 A A A
 Frequencies -- 159.1459 229.6806 248.3997
 Red. masses -- 2.2917 1.2669 1.3457
 Frc consts -- 0.0342 0.0394 0.0489
 IR Inten -- 0.0025 0.0069 0.0006
...

Gaussian prints all vibrational frequencies in the output in ascending order so we only need to
check the first entry to ensure that all our vibrational frequencies are real.

Next, we'll calculate the energy for our optimized structure. At this point, I highly recommend that
you read this technical document from Dr. Joseph Ochterski about thermochemistry in Gaussian .1

https://gaussian.com/thermo/

It describes how Gaussian calculates various thermochemical values and their proper usage in
computing ΔGrxn. Searching eqMeCyhex.log for correction produces:

...
 Zero-point correction= 0.198783 (Hartree/Particle)
 Thermal correction to Energy= 0.204789
 Thermal correction to Enthalpy= 0.205654
 Thermal correction to Gibbs Free Energy= 0.171472
 Sum of electronic and zero-point Energies= -274.642438
 Sum of electronic and thermal Energies= -274.636431
 Sum of electronic and thermal Enthalpies= -274.635566
 Sum of electronic and thermal Free Energies= -274.669748
...

With most ab initio methods absolute energies of molecular systems are calculated relative to
free electrons and nuclei which is why they are large and negative.

By default, Gaussian reports energies in Hartree atomic units (or A.U.):

$ 1~E_h = \frac{\hbar^2}{m_e~a_0^2} \approx 627.5 ~ \textrm{kcal mol}^{-1} $
The values we're interested in are:

 Thermal correction to Gibbs Free Energy= 0.171472
 Sum of electronic and thermal Free Energies= -274.669748

The Thermal correction to Gibbs Free Energy is calculated by:

$ G_{corr} = E_{thermal} + \mathscr{k}_BT - TS_{total} $
The Sum of electronic and thermal Free Energies is the sum of the above
 Thermal correction and the electronic energy (also known as the single point energy since
its the energy at a single point on the potential energy surface).2 This
 thermally-corrected single point energy is the value that should be used to calculate free
energies of reaction ().

Gaussian calculates the single point energy of each intermediate geometry it generates during
optimization as well as at the start of a vibrational frequency analysis. We can exploit this fact to save
us from having to set up another calculation. To find the single point energy search
 eqMeCyhex.log for the last occurrence of SCF Done :

 SCF Done: E(RM062X) = -274.841184603 A.U. after 9 cycles

With this value the relationship between these three quantities becomes clear.

E h

ΔG rxn

https://en.wikipedia.org/wiki/Potential_energy_surface

SCF energy: E(RM062X) = -274.841184
Thermal correction to Gibbs Free Energy = 0.171472
--
E(RM062X) + Thermal correction = -274.669748
Sum of electronic and thermal Free Energies = -274.669748

🎉🎉 That's all folks!!! 🍾🍾
You know everything you need to run your own Gaussian

jobs!
In our final lesson we'll see how we can use Gaussian to calculate relative conformational
energies.

A note on split basis calculations

It is common in large systems to use a smaller set of basis functions to find the optimized geometry
(this is part of the Long Course) and then use a larger basis set to recalculate the single point energy.
In this case the calculated Sum of electronic and thermal Free Energies and the
 thermally-corrected single point energy derived from the larger basis set will not be the same.

You must manually correct single point energies when running split-basis calculations.

References

(1) Thermochemistry in Gaussian
(2) Potential energy surface

9. Calculating cyclohexane A-values
The A-value of a substituent is the energy of the axial cyclohexane conformer relative to the
equatorial conformer (i.e., the isomerization energy). In organic conformational analysis the A-value is
used as the archetypal steric parameter.

R

R
ΔG

In our last exercise we calculated the energy of equatorial methylcyclohexane:

https://gaussian.com/thermo/
https://en.wikipedia.org/wiki/Potential_energy_surface
https://goldbook.iupac.org/terms/view/A00012

eqMeCyhex:
SCF energy: E(RM062X) = -274.841184 Eh
Thermal correction to Gibbs Free Energy = 0.171472 Eh
--
E(RM062X) + Thermal correction = -274.669748 Eh
Sum of electronic and thermal Free Energies = -274.669748 Eh

Let's see if you can do the same with the axial conformer. Take a quick break and see if you can set
up and execute this calculation on your own.
If you're just following along or get stuck feel free to grab the files from the code repo.

axMeCyhex:
SCF energy: E(RM062X) = -274.838661 Eh
Thermal correction to Gibbs Free Energy = 0.171734 Eh
--
E(RM062X) + Thermal correction = -274.666928 Eh
Sum of electronic and thermal Free Energies = -274.666928 Eh

Now, you're probably not a physical chemists if you're on this page, so let's convert these numbers
to a more common unit and calculate our A-value (remember):

eqMeCyhex:
E(RM062X) + Thermal correction = -172355.27 kcal/mol
axMeCyhex:
E(RM062X) + Thermal correction = -172353.50 kcal/mol
--
A-value = deltaG = E(axMeCyhex) - E(eqMeCyHex) = 1.77 kcal/mol

So we get a relative energy of 1.77 kcal mol-1, which is in excellent agreement with the literature
values for the A-value of a methyl group.2

These are the kinds of comparisons that underscore much of computational organic chemistry.
Even computations of complex mechanistic pathways are reducible to calculations of relative
energies.

For more practice, try calculating other A-values and checking them with their experimental values.
Then, when you feel like you're ready, give this problem a shot.

References

(1) IPUAC Gold Book: A-value
(2) The Reich Collection: A-values

1 E ≈h 627.5 kcal mol−1

https://github.com/thisisntnathan/dftCourseCodeRepo
https://organicchemistrydata.org/hansreich/resources/fundamentals/?page=a_values/
https://organicchemistrydata.org/hansreich/resources/fundamentals/?page=a_values/
https://goldbook.iupac.org/terms/view/A00012
https://organicchemistrydata.org/hansreich/resources/fundamentals/?page=a_values/

Problems

The smelly dimer problem
Cyclopentadiene is a fairly common reagent in both organic and organometallic synthesis, however
its use is complicated by its facile dimerization into dicyclopentadiene via a Diels-Alder cycloaddition.

+

Your PI Prof. Batman and his lab manager Dr. Robin ask if you could use your newfound
computational skills to study this reaction. In particular, they'd like to know:

The relative energies of the exo- and *endo-*dicyclopentadiene isomers,
The free energy of dimerization (ΔGrxn), and

The kinetic product1 of the reaction (unless you've done completed the Long Course you won't
be able to do this one just yet)

See if you can do this one yourself!

Check your work with the solution in the code repo or literature values.2,3,4

References

(1) Thermodynamic versus kinetic reaction control
(2) Dicyclopentadiene
(3) J. Loss Prev. Process Ind. 2016, 44, 433–439
(4) Ind. Eng. Chem. Res. 2019, 58 (50), 22516–22525

The E-Z isomer problem
Your advisor wants you to compute ground state energies for the two isomers of 3-(4-nitrophenyl)but-
2-en-2-yl triflate. First, run a standard optimization/frequency calculation for the isomers at the
 M062X/def2svp level of theory. As always, you can check your work at the code repo.

https://en.wikipedia.org/wiki/Thermodynamic_versus_kinetic_reaction_control
https://github.com/thisisntnathan/dftShortCourseFiles
https://en.wikipedia.org/wiki/Thermodynamic_versus_kinetic_reaction_control
https://en.wikipedia.org/wiki/Dicyclopentadiene
https://doi.org/10.1016/j.jlp.2016.10.015
https://pubs.acs.org/doi/10.1021/acs.iecr.9b04018
https://github.com/thisisntnathan/dftCourseCodeRepo

N

O

O

Me

O

Me

S
O

F3C

O

(Z)-3-(4-nitrophenyl)but-2-en-2-yl triflate

N

O

O

Me

Me

O

(E)-3-(4-nitrophenyl)but-2-en-2-yl triflate

S
F3C

O O

Do not wait for these calculations to finish. Even running on the cluster, they will take a while.
The best thing to do is to submit them and then go set up a reaction or something. If you're
running on the chem nodes you can expect these jobs to take around 1 to 2 hours.

1) Specifying different built-in basis sets for different atoms
You take your results back to your advisor who doesn't seem very satisfied. They tell you to make
sure the substituents are right by beefing up the basis set on the heteroatoms.

Modify your calculations to use the triple basis set def2tzvp on all heteroatoms and def2svp on
C and H. Give it a shot before checking your input files against those at the code repo.

2) Assigning built-in basis sets to individual atoms
Still unhappy with the results, your advisor tells you to re-run the computations, but this time placing
diffuse basis functions on just the nitro group atoms. The basis set def2tzvpd which has the
diffuse functions added to def2tzvp isn't built in to Gaussian so you figure that another similarly
large basis set with diffuse functions aug-cc-pvtz that is built-in would work just as well.

Run your computations again, this time use aug-cc-pvtz to describe the N and only the two O of
the nitro group. Keep everything else the same i.e.,

C H: def2svp
S F O(trifyl): def2tzvp
N O(nitro): aug-cc-pvtz

3) Incorporating external basis sets into Gaussian
calculations
After a few second guesses, you're unsure of whether or not aug-cc-pvtz is really a suitable
substitute for def2tzvpd ; you also realize that your computations are taking quite a while, and the
other group members are starting to get upset that you're hogging the new compute nodes. You
decide to try using def2tzvpd instead. Re-run your calculations, this time use def2tzvpd instead of
 aug-cc-pvtz to describe the N and only the two O of the nitro group. Keep everything else the same
i.e.,

ζ

https://github.com/thisisntnathan/dftCourseCodeRepo

C H: def2svp
S F O(trifyl): def2tzvp
N O(nitro): def2tzvpd

Remember that def2tzvpd is not built into g16 so you'll have to get the basis set from the Basis
Set Exchange. There are two ways to accomplish this task; see if you can figure them both out
before going to the code repo!

Hint: These are the diffuse functions from def2tzvpd

N 0
S 1 1.00
 0.68441605847D-01 1.0000000
D 1 1.00
 0.12829642058 1.0000000

O 0
S 1 1.00
 0.70288026270D-01 1.0000000
P 1 1.00
 0.51112745706D-01 1.0000000
D 1 1.00
 0.14696477366 1.0000000

Key takeaways
Once your jobs have finished, extract the corrected energies from your results. I've placed mine in the
table below if you're just following along (the input/output files are available in the code repo).

Using these energies can you justify the product distribution observed in the triflation of 3-(p-

nitro)phenyl-2-butanone (products 5g/6g) in this paper?2

Basis Set Isomer
Energy

/ kcal mol-1
ΔG(E<->Z)
/ kcal mol-1

Total Computation Time
/ min

def2svp(all)
E
Z

-973863.597
-973862.450

1.147
37
47

def2tzvp (SNOF)
def2svp (CH)

E
Z

-974540.402
-974539.491

0.911
87
92

1

https://www.basissetexchange.org/
https://github.com/thisisntnathan/dftCourseCodeRepo
https://github.com/thisisntnathan/dftCourseCodeRepo
https://pubs.acs.org/doi/abs/10.1021/ja00450a033

Basis Set Isomer
Energy

/ kcal mol-1
ΔG(E<->Z)
/ kcal mol-1

Total Computation Time
/ min

aug-cc-pvtz (nitro)
def2tzvp (trifyl)
def2svp (CH)

E
Z

-974540.579
-974539.693

0.886
120
134

def2tzvpd (nitro)
def2tzvp (trifyl)
def2svp (CH)

E
Z

-974542.096
-974541.205

0.891
99

110

There are some key takeaway from the data above:

1. The answer never formally changes. In all cases the E isomer, as we expect, is more stable than
the Z isomer.

2. The caveat is that depending on our choice of basis set, we do see changes in the relative
energies of the two species; namely, the relative energies tend converge with increasing basis set
size.

3. Nevertheless, its important to not lose sight of the forrest in the trees. Look again in the predicted
relative energies. In the "worst" case we there is a 1.15 kcal mol-1 difference between the

isomers; in the "best" case, only 0.89 kcal mol-1. The difference in these two predictions is a
mere 0.25 kcal mol-1; it is simple to use this as justification for more computationally intensive
calculations, however consider for a second the experimental implications of this value.

A reaction under control of a 1.15 kcal mol-1 ΔΔG would predict 11% minor product formation,
while one with a 0.89 kcal mol-1 ΔΔG would predict 16% of the minor product; barely something
to split hairs over.

4. Computational time, while relatively cheap, is not free. The difference in relative energy that

comes from using the diffuse augmented basis sets is a whopping 0.025 kcal mol-1 (or 25
thousandths of a kcal). If this number seems small to you now, consider it in the context of the
computational time.
Augmenting just three atoms in our molecule with the diffuse functions of aug-cc-pvtz
increased our total computational time from 87 min to 120 min, a 40% increase in resources. All

for 0.025 kcal mol-1. Realizing that a ΔΔG of 0.025 kcal mol-1 erodes a selectivity by less than
1%, it seems a little silly. Note that DFT scales in cubic time () with respect to the number
of electrons in your system so as the size of your molecule increases this issue will only get

much worse.3 Take a look at this paper for a discussion on the necessity of diffuse functions.4

O(n)e
3

https://pubs.acs.org/doi/10.1021/jp312755z

Computational chemistry is all about choosing which assumptions to make because all models
must make assumptions, i.e., there is no free lunch. In the most rigorous sense we can, we are
always searching for the good enough method that balances chemical accuracy with
computational cost.

Resources

(1) Basis Set Exchange
(2) Vinyl cations. 12. Mechanism of reaction of cis- and trans-3-phenyl-2-buten-2-yl triflates.
Evidence for vinylidene phenonium ions by Peter J. Stang and Thomas E. Dueber J. Am. Chem. Soc.
1977, 99 (8), 2602
(3) Max Hutchinson on CompSci Stack Exchange
(4) Is the Use of Diffuse Functions Essential for the Properly Description of Noncovalent Interactions
Involving Anions? by Antonio Bauzá, David Quiñonero, Pere M. Deyà, and Antonio Frontera J. Phys.
Chem. A 2013, 117 (12), 2651

Resources

g16 routing line templates
This section provides general templates for the most common Gaussian jobs. Minimal explanation is
provided and it is strongly advised that you read the respective sections for these calculations.

To run any of the optimizations below using Gaussian's generalized internal coordinates give
OPT the GIC keyword.

Split-basis calculations

In all cases a split basis set has been utilized to reduce computational costs as our group typically
works on relatively large systems. In the following “Basis Set (HL/LL)” refer to the high- and low-level
basis sets, respectively. If your systems are small enough or computational resources are
considerable enough to treat the entirety of the system with a single basis set then that approach is
preferable. As we've covered already, a final single point energy calculation is redundant in this case.

N.b. SCF energies computed using two different basis sets are incomparable.

https://www.basissetexchange.org/
https://pubs.acs.org/doi/abs/10.1021/ja00450a033
https://scicomp.stackexchange.com/questions/5515/how-does-density-functional-theory-scale-with-system-size
https://pubs.acs.org/doi/10.1021/jp312755z

Ground State Geometry Optimizations/Energy
Calculations

Step 1: Optimize a ground state geometry

#N Level of Theory/Basis Set (LL) OPT FREQ=NoRaman
temperature=Temperature Integral(Grid=UltraFine)

Step 2: Calculate ground state single point energy

#N Level of Theory/Basis Set (HL) SP Integral(Grid=UltraFine)

Transition State Optimizations/Energy Calculations

Step 1: Optimization around the active atoms

#N Level of Theory/Basis Set (LL) OPT=(TS,CalcFC,ModRedundant,NoEigenTest)

Then, at the end of the input file, add: B [Atom 1 number] [Atom 2 number] F
Where atoms 1 and 2 will be frozen in the geometry optimization
e.g. B 74 94 F

N.b. there are spaces between each parameter and the next.

If optimizing using Generalized Internal Coordinates (GIC)

#N Level of Theory/Basis Set (LL) OPT=(TS,CalcFC,AddGIC,NoEigenTest)

At the end of the input file, add: CoordinateName(freeze)=R(Atom 1 number,atom 2 number)
Where atoms 1 and 2 will be frozen in the geometry optimization
e.g. BrC(freeze)=R(54,46)

N.b. all coordinates must have a unique name

Step 2: Geometry optimization of the active atoms

#N Level of Theory/Basis Set (LL) OPT=(TS,CalcFC,NoEigentest)
freq=NoRaman temperature=Temperature Integral(Grid=UltraFine)

Step 3: Calculation of single point transition state energies

#N Level of Theory/Basis Set (HL) SP Integral(Grid=UltraFine)

QST Transition State Optimizations/Energy
Calculations

Step 1: Optimize ground state geometries for reactant
ensemble and product ensemble
If using QST3 , also optimize the best guess for the transition structure.

#N Level of Theory/Basis Set (LL) OPT FREQ=NoRaman
temperature=Temperature Integral(Grid=UltraFine)

Step 2: Quasi-Newton Transition Structure Search
It is strongly advised to save a checkpoint file for these calculations as you'll need it for the intrinsic
reaction coordinate calculation to verify the optimized structure.

#N Level of Theory/Basis Set (LL) OPT=(QST2/QST3) FREQ=NoRaman
temperature=Temperature Integral(Grid=UltraFine)

Step 3: Calculation of single point transition state energies

#N Level of Theory/Basis Set (HL) SP Integral(Grid=UltraFine)

Intrinsic Reaction Coordinate (IRC) calculation for
verification of transition structures

An IRC requires initial force constants to proceed. The easiest way to do this is to use the ones in the
checkpoint file from the previous frequency calculation using option rcfc , but if you didn't save the
checkpoint file from the TS optimization then pass the option calcfc to calculate force constants at
the beginning of the calculation.

#N Level of Theory/Basis Set (LL) IRC=(rcFC/calcFC)
temperature=Temperature Integral(Grid=UltraFine)

A collection of papers/webpages/
blogs/lecture slides/etc... that I've
amassed over the years (in no particular
order)

The Basis Set Exchange: A public library of basis sets maintained by MolSSI (Virginia Tech) and
Environmental Molecular Sciences Laboratory (PNNL)
Read more about it!

J.C. Corchado and D.G. Truhlar on Dual-Level Methods for Electronic Structure Calculations

Frank Jensen talking about the Pople basis sets on Stack Exchange

Seminar slides from Mikael Johansson of the University of Helsinki on wave function methods and
DFT

Thirty years of density functional theory in computational chemistry: an overview and extensive
assessment of 200 density functionals by Narbe Mardirossian and Martin Head-Gordon Molecular
Physics, 2017, 115 (19), 2315
This review provides a comprehensive benchmarking of over 200 DFT functionals over several
datasets representing different computational datatypes.

Is the Use of Diffuse Functions Essential for the Properly Description of Noncovalent Interactions
Involving Anions? by Antonio Bauzá, David Quiñonero, Pere M. Deyà, and Antonio Frontera
J. Phys. Chem. A 2013, 117 (12), 2651
Discussion on the necessity of diffuse basis functions in anionic calcualtions

Common Gaussian error messages

https://www.basissetexchange.org/
https://doi.org/10.1021/acs.jcim.9b00725
https://comp.chem.umn.edu/Truhlar/docs/C63.pdf
https://mattermodeling.stackexchange.com/questions/318/approximate-equivalence-table-between-poples-basis-sets-and-jensens-dft-optimi
https://events.prace-ri.eu/event/674/attachments/618/902/QC-lectures.pdf
https://events.prace-ri.eu/event/674/attachments/618/903/DFT-lectures.pdf
https://doi.org/10.1080/00268976.2017.1333644
https://pubs.acs.org/doi/10.1021/jp312755z
https://docs.computecanada.ca/wiki/Gaussian_error_messages

The blog of Dr. Joaquin Barroso-Flores (Instituto de Química, UNAM, Mexico City, MX)
Incredibly helpful for general troubleshooting

Group meeting slides from Steven McKerrall (Baran Lab, TSRI, CA, USA)

Computational Chemistry 2 by Prof. Hendrik Zipse (LMU, Munich, DE)
Advanced topics in computational chemistry

https://joaquinbarroso.com/
https://www.scripps.edu/baran/images/grpmtgpdf/McKerrall_Feb_14.pdf
https://www.cup.uni-muenchen.de/oc/zipse/teaching/computational-chemistry-2/

